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SECTION I

INTRODUCTION

This report derives an integral equation for the linearized

steady supersonic potential flow over a wing. As in the case of a

subsonic flow a difficulty arises because of tne singularity of

the kernel of the integral equation. The singularity makes it

necessary to express the upwash at the wing by a limiting process

in which one approaches the wing from the interior of the flow

field. Each integral equation formulation is based on the use of

a fundamental solution. The idea of using such fundamental

solutions for the representation of the flow field is quite old.

It appears for instance in so called "box methods". These methods

start immediately with a discretization of the problem and in this

manner reduce the difficulties caused by the singularity of the

kernel. In contrast the present approach uses analytical means to

transform the initial formulation so that in the final formulation

one deals with tractable quantities and the limiting process in

which one approaches the planform no longer appears explicitly. A

discretization must, of course, again be carried out, but it

appears only after the analytical preparation has been carried

out. The author believes that this procedure gives greater

flexibility in taking the particularities of a specific problem

into account. Of course, one may then arrive at a numerical

procedure that is less automatic.

The fundamental solution for supersonic flows is identical

with that for subsonic flows, except that certain terms change

their signs. If (x,y,z) is a point of the flow field and (&,n) a

point of the planform then the fundamental solution is given by
2 2 2 2 2 1/2l/r, where r - [(x-&) + (1-M )(n-y) + (1-M )z ]I . In the

present context, x is greater than ý; the author has therefore
2 2

consistently written (x-E) instead of (C-x) )

In subsonic flow the coefficient (1-M 2) is positive, in

supersonic flow it is negative. This has a profound effect. In

subsonic flows all points of the wing and of the wake have an



effect on the potential in the field, in supersonic flow only

points of the wing and wake have an influence that lie within the

forecone of the point (x,y,z), that is points (&,n) for which

X-02 _ (M2-1)(n-y)2-(M 2-1)z 2] > 0 and x-& > 0

This is a significant simplification. A singularity is

encountered if this expression is zero. Roughly speaking one

expresses the potential by the integral over & and n of such

fundamental solutions multiplied by a weight function that depends

upon C and n. In a subsonic flow, if one evaluates the potential

(ov rather its derivatives) at a point (x,y,z) then r * 0 for

every point of the flow field for which z * 0. If the point

(x,yz) lies on the planform (in the En-plane, i.e., for z - 0),

one has a singularity of the fundamental solution at E - x, i - y.

This makes the limiting process z + 0 necessary.

In supersonic flow the expression r vanishes along the

entire surface of the cone r > 0 with tip at point x,y,z. For

z A 0 the evaluation of the potential or its derivatives must take

into account the contribution of the fundamental solutions, with

values of C,n of the planform, for which r > 0. These values lie

within the hyperbola in the En-plane given by

(X-) 2_ (M 2-1)(n-y) = CM 2_z , x-C > 0.

At this hyperbola one has r = 0, the integrand of the integral

equation is singular along this curve, even for z A 0. The

singularity becomes more pronounced if one takes derivatives.

This is remedied by a single transformation, but then the image of

the leading edges under this transformation will be z-dependent.

The effect is minor because for the problem treated here the

weight function for the fundamental solutions is zero at the

leading edge.

In Section II of this report, the approaches to the problem

by the velocity and by the acceleration potential are ccmpared

with each other. For supersonic flow, at least, the author favors

2



the velocity potential, because the pertinent fundamental solution
doeo not introduce a singularity at the wake of the points (ý,n)
of the planform for which it is defined. Such singularities make
the upwash field less smooth, when one discretizes the integral
equation. This generates an uncertainty, if one imposes upwash
conditions a, individual control points. A main advantage of the

acceleration potential lies in the fact that it anticipates the
contribution of the wake. But in most supersonic flows the wake
has no influence on the pressure distribution over the air foil.

In Section III the basic equations are compiled. This
includes the introduction of the Lorentz transform which will
prove useful in the treatment of conical fields. Section IV
describes the problem in general terms. In Section V the analysis
of the general case is prepared by a two-dimensional example. The

general integral equation is derived in Section Vt. This
discussion deals mainly with the leading concepts. Some detailed
investigations which, although desirable for mathematical
completeness, only confirm results that can be expected, are found
in Appendix A. Section VII applies the integral equation found in
Section VI to conical fields, they occur in the vicinity of the
tip of the airfoil. Here the Lorentz transformation is applied to
suppress an unpleasant numerical singularity. In Section VIII
some remarks about a possible discretization are made. The
treatment of contribution of points (E,n) at a distance from the
point (xy) for whicn the upwash is evaluated is rather sketchy;
more details are given for the contributions of points (E,n) in

the immediate vicinity of the point (x,y).

Mathematical details which would have been too disruptive in

the presentations of the main ideas are found in a number of
appendices.



SECTION II

COMPARISON BETWEEN THE VELOCITY AND THE ACCELERATION POTENTIAL

As is well-known, the analytical formulations for the

linearized flow over a wing in terms of the velocity potential and

in terms of the acceleration potential are based on the same

simplifications and are, therefore, equivalent. Differences

arise, however, in the numerical realization. Here are the main

points.

1. The velocity potential arises from the acceleration

potential by an integration along the stream lines (of the

undisturbed flow). A piecewise linear approximation for the

velocity potential, therefore, gives a piecewise constant

function for the acceleration potential and with it, at

least in steady flows, piecewise constant pressures. To

obtain approximations of the same quality one, therefore,

needs smoother approximating functions for the velocity

potential than for the acceleration potential.

2. The acceleration potential gives directly the pressures. If

one expresses the acceleration potential by a distribution

of dipoles over the wing, then the local intensity of the

dipoles gives the pressure difference between the upper and

lower sides. In the wake there is no pressure difference,

the unknown dipole distribution is applied only at the wing.

In contrast there is a jump in the velocity potential not

only at the wing but also between the upper and lower sides

of the wake and one must allow for doublets over the surface

of the wake too. This is no insurmountable obstacle, but in

conjunction with the fact that the acceleration potential

gives the desired pressure distribution directly it makes

the acceleration potential attractive in subsonic flows. In

a supersonic flow with a supersonic trailing edge the wake

has no influence on the pressure distribution over the wing;

but even with a subsonic trailing edge only a small portion

of the wake has an influence. The advantage which one is



inclined to ascribe to the acceleration potential in a

subsonic flow is greatly reduced in a supersonic flow.

3. The integral equations for both the acceleration and the

velocity potential are obtained by representing the flow

field by means of a dipole distribution, over the wing for

the acceleration potential and over the wing and wake

surface for the velocity potential. In discretizing the

problem, one frequently divides the surface into elements

and represents the dipole density in the individual elements

by simple expressions, for instance by polynomials. At the

element boundaries there will be some discontinuity in the

first or higher derivatives. The upwash generated by such

distributions 4ill reflict these discontinuities. For both

the acceleration and the velocity potential, discontinuities

will occur at the element boundaries, but for the

acceleration potential one has in addition discontinuities

along the boundaries of the wake pertaining to that element.

An upwash field arising in this manner is, therefore,

traversed by lines of discontinuity in the direction of the

x axis. This causes an uncertainty if one uses control

points to match the upwash generated by the dipole

distribution and tha upwash given by the boundary

conditions.

I



SECTION III

BASIC EQUATIONS FOR LINEARIZED STEADY SUPERSONIC FLOWS:
LORENTZ TRANSFORMATION

Let x,y,z be a Cartesian System of coordinates, in which x
has the free stream direction and the planform of the wing lies

in the x,y plan. Let U be the stream velocity, M the supersonic

free stream Mach number, B - (M2 -) 1/2-1) , L a characteristic length

and *(x,y,z) the perturbation potential, which describes the

deviation of the velocity field from a parallel flow. This

potential is governed by the equation

We .ntroduce dimensionless variables

x - xL x - x/L (1)

y -. yL y -y/L

z =zL z - z/L

¢(x,y,z) - ULh(x,y,z) = UL¢(x/L,y/L,z/L) (2)

One obtains

-*2¢xx + Cyy • Czz = 0 (3)

Originally the author had introduced at this point a Prandtl

Glauert coordinate distortion by which the last equation is

normalized to the case where M = /2. In view of a later

extension to unsteady flows, where this distortion loses its

usefulness, this is not done here. (It will be used in

Appendix A, which deals with certain mathematical questions, but

has no bearing on numerical work.)

6



At the planform the z component of the velocity is

determined. Let the shape of the wing, iteluding the effect of

an angle of attack, be given by

i .

Then one has the boundary conditions

ii(x,y,z-o) -U~(xy)

Hence in dimensionless form

*z(x,y,z-O) - w(x,y) (4)

with

w(x,y) - FP(Lx,Ly) (5)

A fundamental solution corresponding to a source (whose

strength need not be defined) at a point x - F, y - n, z - 0 is

given by

fS(x,y,z) - [(x-) 2 - 8 2 (n-y) 2 - 2 2]-1/2

provided that the point (x,y,z) lies in the aftercone of the

point (E, n, 0); outside the afterdone 0 _ 0. The interior of

the aftercone is given by

(x-E) - 2 (I-y)2 > 8 2z , x>E

The flow over a wing with supersonic leading and trailing

edges can be described by a distribution of such particular
solutions over the planform

(S)(x'yz) " 14 h(E,n)d~dn (6)

A [(x-) 2 _ 2 (n-y) 2 2 z 2 ]1 1 /2

7



For given (x,y,z) the area of integration is the portion of the

planform which lies within the forecone of the point x,y,z. Except

for the leading edge the boundary of the region is then given by the

curve of intersection of the forecone with the E,n-plane, i.e., by

(x-0) - 2(n-y) - 2z 2 0

This is a hyperbola in the En-plane. The asymptotes are the

straight lines through the point E-x, n-y with the slopes
dn + -1. The vertex of the hyperbola lies at

- x -az

n -y

For z-O the hyperbola degenerates into its asymptotes.

One can include problems with a subsonic leading edge in a

procedure based on Eq. (6) (where the potential is expressed by a

distribution of sources) by introducing a source distribution on a

diaphragm extending from the leading edge to the Mach wave that

forms the boundary of the region of influence of the wing. In the

present report this possibility will not be explored. We shall use

instead a representation of the flow field by a superposition of
doublets.

In conjunction with the treatment of conical fields (Section

VII) it will be useful to carry out a Lorentz transformation*

*The idea to use a Lorentz transformation in the theory of
linearized supersonic flow is fairly old. The author regrets that he
is unable to give the reference in which it was first proposed.

8



x - (1-c 2 ) 11 2x + Bc(1-c 2 )-1/2y (7)

=-1 2 -1/2 -1/2y c(1-c2) x + (1-4) y

- (1-e2)-1/2x- _0(I0-2)-1/2 (8)

y 1 - O-1 (1-2) -1/2; + (1-2 )-1/2;

Z ,,Z

O(x#yfz)-O(xqyqz)

The coordinates & and n are transformed in the same manner.

Then

2 + +2;- + +- xx yy zz xx yy z z

The hyperbola

2 2 (-)2 2 2 0(x-•)2 -82(n-y)2 -g z2 = 0

transforms into

(-)2 2 2(n-y)2 B 2z2 .0 (9)

and one obtains for the Jacobian of the transformation

B(xy)

After the Lorentz transformation one has

9



*(xy~) (f ____h(&, Odidn (0[•€-•)2 2,-_-2 2 2z2 1/2

with h(t,n)

The functions E(F,n) and n(€,n) are given by expression analogous

to Equations (8). The boundary of the region of integration
formed by the hyperbola, appears in the same form as before,

i.e., one obtains Eq. (9). The boundary formed by the leading
edge must be expressed in terms of the coordinates E and n.

If, for instance, the leading edge is given by

y - c1 x - 0, with c1>0

then one obtains in terms of x and y

y(1+8cc 1 ) = x(c 1 + 8-1 c)

Setting

Oc.

one obtains as equation of the leading edge

x = 0

This is a significant simplification.

10



SECTION IV

GENERAL REMARKS

For a wing of zero thickness and for boundary conditions

satisfied at the planform, the prescribed z component of the

velocity is symmetric with respect to the plane z - 0 (this is

the plane of the planform). The potential is then antisymmetric.

Outside the wing and the wake the potential is, therefore, zero;

within the wing and the wake a jump of the potential from some

value to the value with the opposite sign must be admitted. The

pressure distribution over the wing is influenced only by those

points of the wake for which part of the aftercone lies within

the wing surface; because the effect of the upwash at any point

of the flow field is felt only in its aftercone. For a

supersonic trailing edge the wake has no effect on the wing. A

potential which has the desired antisymmetry is obtained by a

discribution of doublets (oriented in the z-direction) over the

wing and, if necessary over part of the wake. A doublet

potential is obtained by a differentiation of the source

potential with respect to z. In formulating the boundary

conditions at the wing one must express the z-component of the

velocity field. One thus encounters a first differentiation with

respect to z when one derives a doublet potential from the source

potential and a second differentiation when one formulates the

boundary conditions. The singularities which arise by these

differentiations are the main concern of the following

discussions. In the subsonic case these singularities occur only

for & - x and n = y. In contrast they occur in the supersonic

case also along the hyperbola which form the boundary of the

region of integration.

In the subsonic case one has the corresponding potential for

a source

wi-I

with

11i



r -[(x-&)2 + 2 (n-y)2 + 02z2]1/2 with 2 - 1-M2

Here r represents, in a suitable metric, the distance between the

point (x,y,z) and the point (E,n,O). This can be carried over to

the supersonic case if one introduces as distance definition

UX02 _a2 Y02 _z2 11/2E(x-;)2 - 132(y-n) - z ]1/

The fundamental solutions are singular at all points where this

"hyperbolic" distance is zero and this includes the points of the

bounding hyperbola.

Incidentally, in a field with hyperbolic distance definition

the Lorentz transformation is the counterpart to a rotation in a

field with the elliptic distance definition.

12



SECTION V

THE TWO-DIMENSIONAL CASE

To familiarize ourselves with the mathematical technique we

first treat the two-dimensional case. If one introduces the

Lorentz transformation this includes the treatment of the

infinitely long swept wing with a supersonic leading edge. For

the two-dimensional case, thq leading edge is always supersonic.

The function h does not depend upon y and the evaluation of the

potential can be carried out for y - 0. The upwash is needed for
z -O. One has

(xz) h(&)d(dn

tUx-E) -0 n -0 z I

As was stated above the area of integration is bounded by the

leading edge (here taken as the line C - 0) and the intersection

of the forecone of the point (x,y,z) with the C,n plane. Because

we carry out the integration for y 0, the bounding hyperbola is

given by

(X02 2 12 2 Z2.0(x-•)2 - 82" -B -22O

In the limit z = 0 the boundary is given by its asymptotes

x- E s- 0

The vertex of the hyperbola lies at

x - E -8z, 0

With the limits specified, Eq. (11) appears in the form

x-0z nupper

ý(xOz) h(E)(dn
*(xO ~ ~Nz) z J i~j [x ~~~ n I

nlower

where nlower - [(x-0)2 - 2z 21/28/

13



nupper + [(x-0)2 - 82z 11/2/8

Setting

-- 1 2 2-2z1/2
[ i (x-) -8 z]

one obtains

2 -2- 22] = 2 - 82 z2 ] 1 /21-i2 ]1/2

and for the inner integral

+1 d1[ -1

/ 21

x-Bz

Hence 4•(x,z) - 8-IfJ h(•)dF•

0

X 81 ir h(x-Oz)

Oz - nh(x-oz)

This satisfies the differential equation for one-dimensional flow

-0 2 xx + 0 zz = 0

14
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SECTION VI

THE UPWASH IN THE GENERAL CASE

The point of departure is again Eq. (6). Let the leading
edge be given by

n - g(V) (12)

We set, in analogy to the procedure of the two-dimensional

problems

n - y + n1 q(x,E,z) (13)

S- , (Cn-y)/q

where

q(x-C,s) - [(x-&)2- 2s)1/2 (14)

To emphasize that in the expression q the coordinate z occurs
only in the form of z 2 , we have introduced z2 .s

One has q(x-t,O) = (x-t)

S(x-&)/q (15)ax

-• 8 -82z /q

The portion of the boundary of the region of integration

formed by the hyperbola is transformed into

Tl+ 1

15



The portion of the boundary formed by the leading edge appears as

n , g(x,y,F,s) (16)

where

i(x'yEs) B g( ),•)(17)

The expression for 0 generated by a source distribution is then

given by

x-Bz nupper
-(S) Ji h(E'y+nB.lq) d)d(€(S (xYZ) -2 11 ":•2 2 dnid (18)

nlower

Here E is the smallest value of E in the region of integration.

If the wing has a tip, Eo is independent of z. In cases where

the foremost point of the region of integration is the

intersection of the hyperbola with the leading edge, &o will

depend upon z. Furthermore,

nlower ' _1 along the hyperbola (19)
upper

plower = g(x,y,E,z) if the limit of n lies at the

upper
leading edge.

In Eq. (18) the limit z+O can be formed immediately

x nupper
(S)(O d1  . (20)

nlower

16



This formulation is practical for supersonic leading and trailing
edges. At the planform the upwash is given by Eq. (4).
Accordingly, one must form in Eq. (18) the derivative
( sx,y,z-O). Before we do this let us determine fx , which is

needed to express the pressures in cases where one represents the

flow field by a superposition of sources. If one is interested
in only the pressures of the planform, then one can set z-O
before one carries out the differentiation, i.e., one can
differentiate Eq. (20). The derivative with respect to the upper
limit of the outer integral gives

+1

-1 ] d) 1

We denote by h(l) and h(2) the partial derivatives of h with
respect to its first and second arguments. One then obtain

x nupper
s (xy,z-O) 1B h(x,y) + 0 2  i_)•-dC (21)

x~~• -,-)/

nlower

The limits for n are determined for z-O. Hence from Eqs. (19)

and (13) and (14)

plower - +1
upper

or

T lower x-
upper

17



(s)
Next the derivatives of f with respect to z are

evaluated. As we mentioned above, the first derivative is needed

in satisfying the upwash conditions, if one expresses the

potential by a source distribution. Besides, the expression z)

can be interpreted as the potential due to a doublet

distribution.

d ( x Vy fz)0 (x,y,z) - OZ

To formulate the upwash conditions for the potential *d one must

form

d (x,y,z) - sCxyz)Cz " zzxyz

Ultimately, all quantities will be evaluated for z-0.

Configurations of the region of integration are shown in Figures

1 and 2. The leading edge may contain subsonic or supersonic

parts. For supersonic or subsonic parts of the leading edge the
Sslope dn/dg - dg/dC is respectively greater or smaller than $-1.

A leading edge which is entirely subsonic consists of two parts,

one with positive the other with negative slope. We divide the

region of integration into two parts I and II by a straight line

F=-I lying in the region where the upper and lower limits of i

are +1. The contributions to the potential from these regions

are denoted by ¢(sI) and '(s II) or (dI) and ¢(d , (ifthey

are generated respectively by sources or doublets), Figure 3.

Consider

x-Oz +1
¢(sI) (x,y,z) = -Ifh_(_,•Y/•_o- q)dnldE

1 ( _ - 2)I/2

tj -1

18
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Then by differentiation with respect to z

+1

s'I) (xIyfz) .- -h(-,y+-l_ qn

X0oZ +1 (~2)( 1

+ a- 1 (Jy+no q) _(aq/3z)dn d/ (22)

Because q(x-Ez) = 0
- x-8z

the first term gives immediately

+1

-h(x-Bz,y) = - vh(x-oz,y)
-1 -n2) 1/2

Substituting 2R from Eq. (15) one obtains for the second term

x-'z +1 h (,+ 1I

1 -1 (1rid7

The factor q tends to zero as & approaches its upper limit

and for z=O (s-O) one obtains a non-convergent integral of the

form "x-. One observes, however, that

-1

because of the antisymmetry of the integrand with respe')t to n.

The inner integral can, therefore, be replaced by

19



+1 [h (2 ) ( ,( _y+ n$- q ))_h (2) ( 4,y ) ]nd.ii

-1 (1-n_ )1/2

Let

h((2)h(2)(•,y) (1((,y,*)

The function exists even for 4-0. There

(,(,,y.O) - h(2,2)(4.y)

(where h(2,2) denotes the second partial derivative with respect

to the second argument of h.)

Then

h (2) (ý,y.•s-l1q) - h (2) (4,y) - -no- 1 q•1(E,y,•-1-1q)

and the expression z(sI) assumes the form

z

x-z -1 -2
z (4,y+TIOq)n d )d

' (sI)-ih(x-Oz,y)-z 1 -2 17 •Y~8l~2d).
Cz - 1- -- d

The inner integral is bounded. In the limit z=O the second term

vanishes and one obtains

€(dI) (x'Y'zO) =(3,1)(x,y,z-O) = -wh(x,y) (23)

The contribution of the region I to the second derivative of
(S) with respect to z is

20



z(dI)(x,y,z) - rh(i 1)(x-oz,y)
z

x-oz +1 q (Ca,,•1-s-')2d
-1 n 2 1/2)n n))d

E ( 1_ )1/ d

+1 -1 -2+Zf *I(1r wY' q )) 2dT)j0 .j (j -2 1/2

-1 ()-x-z

X-Bz +1 (3)q3
_zB-2 (f,,,n -. q) n 3(aq/;z)jz 2 M dr_?)•/ dEld

ý1 -1

Here *(3) denotes the partial derivative of *1 with respect to

its third argument. The second term on the right has already

been evaluated, it gives a non-vanishing contribution. The third

term vanishes in the limit z-O, because of the factor z. The
fourth term has actually a factor z2 , because _ 2z Thus,z/qit will vanish in the limit z+O provided that the remaining

expression remains finite. One has after substitution of aq/az

x-8z +1 (3) - -+1_1z2 f [ (E,Y,no q))11 dn ) d&

•1 -1 (-

Again one is concerned about the factor q in the denominator

which vanishes at the upper limit E-x-Oz. Here the procedure

shown above is applied again. One observes that

+ -- () -3

21



because of the antisymmetry of the integrand with respect to

One introduces

(•3) ((y•),3)(,nO

*2(E ,y ,E) -

If 1(3) is sufficiently smooth, as it is except for possible
singular lines, the function exists for ;=O.

Therefore,

+1 * 3)(Ey,(no-1q)n3dn +I 2(_'y'(__ 1q)_dn

-(i_211/2 J ( 21_/2
-1-I (

and this expression exists.

One then obtains

x +1 -2 --r rTI P 1( EY ,n 1O(x-E))dn

(dtI)(x'y'z-O) - wih( 1 (xY)-- 1 J (J 2)1/2 - dý
Z1
Z I -1"(1-r"l-i

Substituting *I, one obtains for the second term

- (Ey~nB (x-1))dn )dE (24)

E (1-n 2) 1/72 (X-0,

As E approaches the upper limit x the integrand seems to tend to

infinity but by the above argument one obtains a finite
expression for the inner integral provided that the integrations
are carried out in the sequence shown in Eq. (24). To allow for
a change in the sequence of integrations we write

22



X-C +1¢*lim f[ i•nh (E)21- )l2xSY+ns-l0(x-M))dnldE

e+ -rn 1 -1 /

Now it is permissible to change the sequence of integrations

+1 X-C
0 - (2) 1

-li (1 h X-$ (25)

According to this formulation one first excludes the neighborhood

of the point (E,n) = (x,y) by a straight line E=x-e (E>O), and

after the integrations forms the limit e+0. Then

(dI) (x,y,zh0) - rh(1)(x,y) + I (26)Cz

where I is evaluated either in the form of Eq. (24) or of

Eq. (25). The regions of integrations for z=0 and z•O are shown

in Figure 4.

In the region II, x-E>O therefore, q-[(x-)2-B2 z 21 1/2>0,

even for z=0. A denominator q is no longer detrimental. But

here part of the boundary of the region depends, after the
- 2transformation to n, upon s=z (The transformation to n is

desirable because of those portions of the boundary formed by the

hyperbola.) We interchange the sequence of integrations in

Eq. (18):

+1

¢(s,II)(x,y,z) . -1 I-n2)1/2 (j h(ý,y+no-lq)d&)dn (27)
-1 f( ~ , l s

Here f(x,y,i,s) denotes the inverse of the function g(x,y,5,s),

Eq. (17), at fixed x,y and s. Then
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+1

*s (x,y,z) - 1f-I - I - 2z-f h(11y+iq) )dn

-1f(x,y,rn,s) (28)

+1 1 h ( 2 )1
-z r n-•• 7 h (&;,Y+-nB-_q qd&)d-n

- i q

In the first expression h is evaluated, for the particular value

of n under consideration, at the lower limit of the region of

integration over F. This is a point of the leading edge and

there h-O. For z=O both terms on the right of the last equation

vanish

*(s'II)(X,Y,Z=O) . 0
z

We combine this result with Eq. (23) and obtain

zS(xy,z-O+) = 0d(x,y,z=O)= -7rh(x,y) (29)

We now turn to the second derivatives of ( with respect to z.

At the leading edge the potential and with it h is zero and

continuous. The first term on the right of Eq. (28) is,

therefore, zero, even for zAO. Differentiating the second term

with respect to z, one obtains an expression which will not

vanish for z-O, namely

+1 - (2) + 1T1n ([ h (ý,y+ -l (x-&,O) dý)•

-J (I• 2  2 ( q O )d (30)

Further terms arise by differentiations of s with respect to z;

they introduce other factors z. One will surmise, that these

terms vanish for z=O. This, however, is not self-evident. At a
1I/2

subsonic leading edge h behaves as u , where u is the distance

from the leading edge. The differentiation with respect to z

24



generates some terms which are infinite as ý approaches the

leading edge. (One of these is h(2) itself.) Actually, they

will cancel. A detailed discussion is carried out in Appendix A.

Eq (30) is indeed the only contribution to 0z(dII)(x,y,z-O).
Anticipating these results, we compile here the formulae needed

for a numerical approach.

Sd(x,y,O+) = -irh(x,y)

d() • h( 2 )(•(y+n8-(x- )
Sd(xyO) = -rfh (l(xY)-jj (I_ Ti (X2 72 -y- (31)

At

where A' is the area of the planform within the fore-cone of the

point (x,y,z=0), but with the point (E,n)-(x,y) excluded by a

line &-x-c, c>O. Subsequently, one forms the limit e+O. The

same expression is written in the original coordinates. Equating
the resulting expression with the given downwash w(x,y), one

obtains the integral equation from which the doublet density
h(x,y) can be determined. The limiting process z4O no longce

appears in this equation.

( (1) 2ff (n-y)h (2)(&,n)d~dn
z(,Y- (XYO-I~x,Y, 8Ojj_ 2 2 2-; 1/2 2 (32)

Av[x-C) -8 (n-y) ) (X-0)

If the integration with respect to n is carried out first, then
the exclusion of the point (•,n) = (x,y) is not necessary. But

if the integrations are carried out in a different sequence then
in some intermediate steps one obtains contributions which are
large if ý approaches x and the precautionary step of introducing

A', which initially excludes the critical vicinity of the point

(x,y), is necessary.

Eq. (31) expresses the upwasn in terms of h - hx at the
point (x,y) and of an integral which is due to the deviation from
a two-dimensional flow. (One notices that the integrand contains

a factor h( 2 ) h .) Because of the denominator

25
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2 2 (r-)2 11/2
[(-)- 2(r,-y) , points in the vicinity of the Mach waves

through the point (x,y) enter with greater weight. A good

approximation for the vicinity of these lines is, therefore,

desirable.

Some thoughts about the application of Eq. (32) in a

numerical procedure are found in Section VIII.

All transformation carried out in this Section could have

been performed in Eq. (10). Therefore, one obtains

alternatively

z X

h(x,y) has been defined in conjunction with Eq. (10).

Moreover

w(x,y) - w(x(x,y),y(x,y)).

26
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SECTION VII

CONICAL FIELDS

Frequently, the planform has a tip at which two straight

Subsonic leading edges meet. In the vicinity of this tip one

obtains a conical field. The original concept of conical fields

is applicable if the angle of attack is constant. The wing is

then regarded as a degenerate cone generated by straight lines

through the tip lying in a plane. In this case the velocity

vector is constant along each straight line through the tip.

Basically, one deals with a similarity solution, which reduces

the number of dimensions of the problem from three to two.

In linearized flow the concept of a conical field is

applicable also if the upwash behaves like a power of the

distance from the tip. Separately for each such power, one makes

a similarity hypothesis. If the velocities are constant along

straight lines through the tip one can apply a further

transformation to the resulting partial differential equations in

two dimensions (for the individual velocity components) which

yields the Laplace equation. In this case the theory of' analytic

functions can be applied. Unfortunately, one is led, at least in

the present problem, to the evaluation of elliptic integrals.

Moreover, if the velocity is not constant but follows a general

power law, then the theory of analytic function.s is not

applicable. We show here, how such conical fields can be treated

(numerically) by means of the present integral equation

formulation.

The procedure is first described in general terms. Let the

leading edges be given by

y/x - a1 and y/x = -a 2  ; a > 0, a 2 > 0

The planform is nearly always symmetric with respect to the x
-1 -1

axis. Then aI 1 a 2 . For subsonic edges al < g , a 2 < a

27

-- ___-- -fl lflS - tfl t~l f - k l. ~ r-.~afxnctflr WAX



The present approach assumes that the upwash is given by a

linear combination of expressions

w(x,y) - x w (y/x) (33)

In practice one usually has

w(x,y) = xmJy

Then M = m+j

O(y/x) - (y/x) 3  (34)

TIe computations are carried out separately for each choice of m

and J.
w(m)

For a constant angle of attack m = 0 and w is constant.

In most practical applications m = 0, 1 or 2 will be sufficient.

The unknown function h is now written in the form

inn

h(x,y) = b nh (y/x) (35)
n

where

h mn= x m+hn(y/x)

The functions h n(y/x) are known. Probably, one will use the same

functions hn for all values of m. The coefficients bn are to be

determined. Substituting Eq. (35) into the integral equation,

Eq. (32), one obtains

x m (m)(y/x) = EbnQimn (y/x) (36)
n

where Qmn (y/x) is the upwash generated by a function

himnx mXh n(y/x). This substitution gives

Qmn(y,x) = Qmnl + Qmn 2
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with

Qmnl 0•(ahmn(x,y)/ax)

Qmn2. (23(7y)()hmn(E,n)/an)d~dn
-Jj(x-•)22-2(q -y 2 (x-t)

In discretizing the problem one uses only a finite number of
n

functions h (y/x). To determine the coefficients bn a

collocation method is probably sufficient. We set for this

purpose y/x - ck and admits as many values of ck as one uses

values of n. Then one obtains the following system of equations

M(m)c NQmn (cx n E kb , k - 1,..N (38)

The main task is the determin-ation of the matrix elements
Qmn(ck).

Regarding the Cnoice of the functions hmn we make the
following observation. If the angle at the tip is small, and

ala 2 -a, then one obtains from slender body theory, that the
potential, and with it, h is given by

cont(2x2 y21I/2
const (a 2- y ) ; y < ax,

This suggests that in a more general situation h can be
represented by

h = E bn hmn (y/x) = E b xm+lhn(y/x) (39)n n
with

hn (y/x) - [(a 1 -(Y/x)(a 2 +(Y/X))] 1/2(y/x)n (40)

Since for a slender tip the first term is already sufficient

it can be expected that the number of terms necessary to obtain a
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reasonable accuracy is fairly small. Moreover, if a1 - a 2 and

the upwash is either symmetric or antisymmetric with respect to

the x axis, then only the values of n which respectively are even

or odd will occur.

The leading edges are given by

y/x = a, ; 0 < a, < 8<

and

y/x - -a 2 ; 0 < a2 < 81

The further development is suggested by the following

observation. The expression Qmnl defined in Eq. (37), for m - 0

and for

h - (a2 x - y )1/2

contains an essential term

2 a2 2)- 1/2= a (a - (y/x)

This expression and, therefore, Qmnl tends to infinity as y/x
tends to -o. But one expects from slender body theory that the

upwash caused by this expression is finite over the entire width

of the airfoil. The expression Qmn2 will, therefore, contain

some term which gives an equally large contribution but with the
opposite sign, so that this infinity is cancelled. This

complication can be avoided if one first carries out a Lorentz

transformation (separately for each of the chosen values y/x) so

that the chosen value of y/x is transformed into y/x - 0.

The Lorentz transformation is first carried out without this

specialization in order to provide a clear picture of the

individual steps. We repeat the transformation formulae
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2 -1/2x = (1-c ) - x - 8cy) (41a)

2 -1/2 (--1y = (1-c2) (-B-cx + y)

x = (1-c 2)I 2 ) x + Ocy) (41b)

y (1c2)-/2 ()-cx + y)

The variables ý and n are transformed in the same manner.

By the Lorentz transformation the left hand side of Eq. (38)

assumes the form

(1 2 )-m/2 (x-cy) mQ4m(-B- Ic+(Y/x))
1-Bc(y/x)

The constant c will be chosen in such a manner, that, y - 0 for

y/x - ck. From the second of Eq. (41b) one then obtains

c - -Bck (42)

With this choice one obtains for the left hand side of Eq. (38)

(I 2- m/2 -m~m
(1-0) X Qm(ck) (43)

To transform the right hand side of Eq. (38) one must first

carry out the transformation to F and n in

hmn(x,y) = xm+1[(a1-(y/x))(a 2 +(y/x))]l/ 2 (y/x)n (44)

hmn(( ,n) is obtained by substituting x - x(x,y) and y = y(x,y).

Let On/& - p (45)

Then, from Eq. (41a)

p-c (46)
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Moreover

S) (1-ce)- 1/ 2 (1-cp) (47)

The leading edges are originally given by

/ - al and n/E - -a 2

One finds from Eq. (41)

- - - 1
T1C+(y/X)

- - cy/x , (48)

The leading edges, therefore, transform into

p-a 1 and p - -a 2  (49)

with

BaI+c ~ Ba2-c
1 1+c~a a 2  TO 1 (50)

In the expression hn Eq. (40), a factor

[ (a 1 -ni/E) (a 2 +n/E) ] 1/2

occurs. One finds with Eq. (45)

1+5alc
( l / ) l- p) (al-p) (51)

1-Ba 2c -
(a 2 -n/E) (1-cp) (a 2 +P) (52)

mnnNow the transformation of wm, Eq. (44), can be carried out

hmn( E (i_,2)-m/2 a3 a-n-1Em+1 Fmnn(p) (53)
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wi th

a3 (1-c 2 -1/2[10c)-$c1 1/2 (514)

-1/2 rn-n(_n

where p is expressed in terms of niý by Eq. (45). We note

dFn /dp - a,,pja2 1/2 f~' (p) (56)

where

imnn () (-+a2 a2(,CP)m-n(p~.c)n (57)

m-n (p),)

+ n(1-cp)m-(p~0)rfl 3

The second term in the last bracket vanishes for A~-0, therefore

no difficulty arises, even for p-c.

One has in particular

fmn n - n nd n-1f(O)-(a1-, a2) (-c) +al a2[(m-n) (-a) *n(-c) 1(58)

Mo reo ver

(fndp) (,); (3/2)(a1 -a2)[(ni-n)(-c)n +n(_n-c)

*ala2 [Cm-n-1)(m-r.) -c) n +2(m-n)n(-cn

+ n (n-1)(-c)n-2 (59)
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One thus obtains for general c, by substituting Eq. (53)

mn 2 -m/2 -- n ( m+1 -nn2
Q(x,y) -(1-c ) a3 {8~ax F (oy/x))/ax)

n1  LTI j"(9( m+l Finn (Bn/&)) / a r)0ýdnj
[ -) (n-y) 3 (x-=)

To make the dependence upon E, n and x, y obvious we have here

substituted the expression for p. With the special choice made

above, namely c - -ack, one obtains y - 0 for y/x = ok• Then the

expression simplifies to

mn(x,O) - (1-c )- xmQ (60a)

with

Gmn- mnl + .mn2(6b
Qin Qin Q'nn (60b)

where

mnn, n-in -m+1 inn(61)-Q = a3a x a(x F ())/ax (61)

mn2 -n+1- -M rfBa(Em+lFmn (8n/ý))/3n)dLdn (62)
Q -a 3  x J 2()

Substituting Eqs. (43) and (60) into Eq. (38) one obtains

wi(ck- N innw1k E bnQ (Ok) (63)

In Qini, Eq. (61), Finn(o) from Eq. (55) is substituted and the

differentiation with respect to E is carried out.

Then

Qmnln -a-n(m+1)(aa2)/ 2 ()n (64)
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In the expression Q Eq. (62), p defined in Eq. (45), Is

introduced as variable of integration instead of n. Then

dii = 8-1dp (65)

In addition, we set

/x C. (66)

The region of integration is a quadrangle. Two sides are formed

by the leading edges. The lines p - const are straight lines

through the tip of the airfoil. The limits for p are then

according to Eqs. (49) p = -a 2 and p - al.

The other two sides are given by the asymptotes of the

original hyperbolic boundary, into which this boundary deforms as

z+O. They are the intersection of the characteristic cone

through the point xo,yo with the planform. The Lorentz

transformation leaves the equations for the hyperbola, a,,d

therefore, also for its asymptotes unchanged; one therefore has

for the other boundaries

on + = x0  for n > 0

- - x0  for < 0.

One, therefore, obtains in either case

x- X

'+IpI

or

A 1
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Now the expression Q mn2, Eq. (62) can be rewritten. We express

dp/din by Eq. (65) and dF mn/dp by Eq. (56). Carrying out the

integration with respect to p last, one obtains

•mn2• n a1_[)( 2 +P) -1/2fmn(p)Im(p)dp (67)
Q 

(6)

-a 2

with

(1+jpj)-I m+2

1M 2- (68)

One notices that the integral Im (p) does not depend upon n. The
m

integrand has only two second order branch points; I (p) can

therefore be evaluated analytically. The integration needed in

Eq. (67) is best carried out numerically.

It was mentioned above the values of m are determined by the

character of the upwash, m-O, 1, 2 will probably be sufficient

for all practical purposes. The evaluation of the integral$

(68) is shown in Appendix B. Here we give the results of m-O, 1

and 2.

Let g (0)(p 2 ) _ (1_p 2 )-1/2

g(1p2) (l_p 2 )- 3 2 (3-2p2 ) (69)

g(2)(p2) _ (l_p2)-5/2((6_(15/2)p2+3p4)
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and
S(0) 0

-(1) - -(1-p 2 )-1

g (2) (-(7/2) + 2p2)(1-p 2)2

Let Im(p) = Ia(p) + IM(p) + Ira(p) (70)

Ia(p) - p-2 + g(m) (p 2 )(log(l+(lp 2 ) 1/2) + -(m)

I"(p) - - -m+1 -1 (71)

1 m(p) - -gm(p 2)loglpl
C

m m m

The distinction between Ia, Ib, Ic,, has been made, because they

must be treated separately in the integration with respect to p.
-2 (0)

This is obvious from the terms p2 I- and logIPI in Ia
(0) (0)I b), and I , respectively. Accordingly, we write for the

expression (67)

Mn2 mn2 in2 +^n2 (72)
Qmn2 Qa + Qb +c

where the right hand sides arise by replacing I m(p) by theandm
respective expression Ia(P), Im(p) and Im(P). One has

specifically

Qmn2
a

n 1/2 1 (m) 2 1/2 (m) mn-a3B- [(a1_p)(12.p) -1/2[p- +pg log(l+(1-p ) )+pg(). (p)dp

-a2

The term p 1 in the second bracket introduces a singularity at p-O.

Further singularities are encountered at the upper and lower limit
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because of the first bracket. The occurrence of the singularity at

p-O is to be expected according to the discussions carried out in

Section VI in conjunction with Eq. (25). One expects that at this

point one must take the Cauchy principal value. This is

demonstrated in Appendix B. Practically, one can proceed in the

following manner.

It is shown in Appendix C that

P j [(a-p)(a 2 +p)]- 1 2 p- dp-O

-a 2

where P expresses that one has to take the Cauchy principal value.

Accordingly, one has

mni- - -1/2..

Qmn2 _a3 -n [(al-p)(a 2 +p) ] 1 n(p)dp (73)

-a 2

with
n f mnp)-f mn (0) W(m)11

in f n p +pg (p 2 )log(1+(l1p2) 1/2)+pg (m) (p 2 ) (74)

jmnp)-) (0)

The expression fmn(p)-fmn(o) is regular at p=O; fmn(p), fmn (0) and

the limiting value for p=O of this expression (if it should be

needed) are found in Eqs. (57), (58) and (59). The expression
jmn(p) is regular throughout the region of integration -a 2 <p<a1 .

Because of the square roots in the bracket of Eq. (73) we set

^ al-a 2  al+a2

2 + 2(75)P = P -2 2

One then obt,.Jns
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+1

Mn2. -n 2 -1/2 mn(p (76)
Q -a 0 (1p ) J()dp (6-a1

In jmn(p), one must express p in terms of p.

Finally, we set

p -sin u (77)

Then

-/2

Qamn 2  -a 3 -n 3 jn(p)du (78)

Here p must be regarded as a function of u. The integrand is a

periodic function of u. In this case the trapezoidal rule (with

equal intervals in u) gives very good results.

In Im(p), one must take the occurrence of the absolute value

of p into account.

Qn2= a3 -n ((m+l)/ 2 )1 sign p [(a_-p)(a 2 + -1/2f n (p)dpb j sig pp (ld

-a 2

0
-n r -1/2 mn=a 3 -n((m 1)12) [- [(aj-p) (a2+p)]- 1f (p)dp

-a 2

+Ij[(al-p)(a 2 +P)] 1/ 2 fmn(P)dp

0

To remove the singularities for p - a1 , and p - -a2 one might applymrn22
the transformation used in Q a again. But because the regions
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-R2 < p < 0, and 0 < p < 31 are treated separately, it is probably

convenient to make separate transformations in the two regions.

Accordingly, we set for the region -a 2 < p < 0

=P + P2 p P - .2  (79)

and subsequently p - u (80)

and for the region 0 < p < al

= - p ' P - (81)

and

u =u2 (82)

Then one obtains

~1/2
a 2

mn2. n r2 -1/2 mn u2_
Qb = -a 3 B -n((m+1)/2)[-j (1 1+a 2 -u )- f nu2-a 2 )du

0

"I/2 -1/2fmn 2

(a 1 +a 2 -u ) (&1n u )du] (83)

0

Within the regions of integration the integrands are regular

functions of u.

The expression
a 1

mn2 -n ( - 1/2]-1/2 (m) 2fmn
c - 3  J(a-p)(a2+0 (p2) (p)logPdp

-a 2

requires special treatment because of the factor logjpI, although

this factor is not detrimental to the convergence of the integral.
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A small region -b < p < +b around p-O is, therefore, treated

separately.

We write

q(p) - [(a1_P)(a2+P)]-/2 p g(m)(p2)fmn(p) (84)

Then

-b +b a1
Qmn2 - -n r f f

a 3  U[ q(p)logipidP+jq(p)loglPldP+j q(p)loglpldp] (85)
"i •b b

-a 2

In the region -b < p < b, the function q(p) is developed with

respect to p. Because of the factor p contained in q Eq. (84),

there is no constant term in the development:

q(p) - b1p + b 2p2 + b 3 p3 +...

Consider the integral

+b +b

f q(p)log p dP- f (blp+b2p +b3p +...)loglpldp

-b -b

The terms with odd powers of p vanish because of the antisymmetry

of the integrand. Taking b small enough, one can restrict oneself

to terms up to p3; then only the coefficient b 2 is needed. One

finds

2 gm(O)[a 1a 2 ]-I/ 2 rdfn j +(L - L)fmn(o)] (86)
p 0 a1 92
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The expressions fin (0) and -d-p1 are found in Eqs. (58) and

(59). Then

+b +b

jq(p)logIpldp - ( f2 logp~dp - (2b /3)b3[(log b)-(1/3)] (87)
-b -b

To remove the singularity at p -- a2 in the integral for the region
-a 2 < p < b we set as above

2 2p + a2 n u , p u- a2  (88)

Then

(ab /2
-b 2

J a 2 a -1/2 mn(g(m)2q(p)loglpldp - 2 ( (a 1 a2 -u f f ~~(p )p log (a 2 -u )du

- 2 0

(89)

Here p is regarded as a function of u. The integrand is regular

within the region of integration. One may be concerned of the

fact,-that b is small and that in the vicinity of the upper limit

u - (a2-b) 12, the argument of log (a 2-u 2) is small, and that,

therefore, Ilog(a 2-u ,j tncreases rapidly. This would make small
steps in the numerical integration necessary. A smoother procedure

is obtained by a further transformation

-1 /2
log(a - U) = -v

_1 /2
u a 2  -exp(-v) (90)

du -exp (-v)du
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Th lmt fintegration u-0O becomes v -- log(9 1/2 The limit of

integration u - (12 -b) becomes v - hlog(.2 1 (a 2 -b) /]. Then

the integral Eq. (89) is transformed into

_lg( (2 1/2_ (92-b)' 1/2

2 (a1+'j-u2)fmn(p)g(m)(p2) p [log( 1/2+u].v]exp(-v)dv (91)

-log(9 2 )

Here p and u are regarded as functions of v. The region 3f

integration would tend to infinity if one allows b to tend to zero
The introduction of v makes it possible to carry out the

integration with a uniform interval.

The same procedure is applied to the region b < p < 1I" One

sets

A 1 - p . u2 ' P a 1 - u2 (92)

(9 -b) 1/2

This gives 2 (9 22)-1/2fmn g(m)(p 2 )p
) - f (p) g ( Plog(a-u )du

0

The further transformation

log (& /2-u) - -v u - AII/2 _ exp(-v) (93)

leads to

-iot (•11/2-b
1 (A1 1/_b) 2 1/2 mn m(2plga1/

2 1/21S 2 _2)2 f (p)g(m)(p 2 )p[log(aI/ 2 +u]_v]exp(_v)dv (94)

-log (9)

Again u and p are regarded as functions of v.

The numerical work proceeds as follows: the shape of the

airfoil enters the problem through the value of a1 and a 2 and

through the given upwash i.e., through the value of m and the
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function w(y/x), which usually has the form (Eq. 34). Moreover,

the Mach number M and with it 0 - (M 2-1)12 are known.

It is assumed that the function routinesihave been written for

fmn(p) Eq. (57),

f mn (0) , Eq. (58)

(dfmnnIdp)I, Eq. (59)
0

m) and Eq. (69)

Of course, the latter expressions need to be programmed only

for the values of m in which one is interested.

In a collocation method one chooses a number of values of ck'

The number must at least be equal to the number of values n.

Initially, one will probably cover the whole range of possible

values of ck, -a 2 < ck < al, in order to demonstrate how well the

upwash condition can be satisfied by the use of a restricted number

of values n.

m
For these values of ck one evaluates W (ck). These are the

inhomogereous terms in the system of equations obtained from

Eq. (63).

On the right side a finite number of values of n is admitted.

In their choice one will take the symmetry properties of the

airfoil into account; for a symmetric planform and a symmetric

upwash one will have even values of n.

The further description refers to a specific value of ok. For

this value one determines c, Eq. (66), a and A2' Eq. (50), and a 3,
Eq. (54). On this basis one finds Q Eq. (64). The quantity
~mn2

n is defined in Eq. (74). For the pivotal values of u neededa

for the numerical integration one finds p, Eq. (77), p Eq.inn mn2
(75) and Tml(p), Eq. (74). The quantity Qb iz aefined in Eq.

(83). With fmn available as a function routine the integrands can
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be evaluated immediately. It is likely that one will use different

pivotal points for evaluating the two integrals.

Qmn2 is expressed in Eq. (85) as the sum of three integrals.
QC

The second integral is evaluated analytically for some choice of b.

With b 2 defined in Eq. (86), the result is given by Eq. (87). The

two other integrals are defined in Eqs. (91) and (94). One chooses

pivotal values of v and evaluates in the first case u from Eq. (90)

and p from Eq. (88). In the second case u is defined in terms of v

by Eq. (93) and p by Eq. (92).

One then has Eq. (72)

Amn2 mn mn mn
=Qa + Q b + Q C

and Qn Q mnl +mn2
(Ck)

The Qmn(ck) are the matrix elements in the system arising from

Eq. (63), n and k are respectively the row and column indices.

After the coefficients b n are found from this system of

equations one can determine h(x,y) from Eqs. (39) and (40).

I :.145
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SECTION VIII

IMPLEMENTATION

In many cases the planform has a tip in which two subsonic

edges meet. Then part of the flow can be computed as a Lonical

field, for instance by the procedure shown in Section VII. One

determines the coefficients bn. Then Eq. (35) gives an

analytical approximation for the flow field. From these

expressions one can compute a pointwise representation of h.

Beyond the region for which the evaluation as a conical

field is possible one uses Eq. (32) to determine h at prechosen

points of the planform, which will be called control points. We

assume that these points lie on lines E - const. Since the

boundaries of the regions of integrations are Mach lines, it

seems reasonable to impose the further condition that the points

lie on preselected Mach lines. One thus obtains an arrangement

similar to Mach boxes, but without the assumption that within a

Mach box the potential is approximated by a constant. The author

rather thinks in terms of a pointwise representation of the flow

f3itd. The function h at a certain point (x,y) is determined

only by data at the planform within its forecone. The

computation can therefore be carried out by marching in the x

direction. In evaluating the integrals in Eq. (32) it is assumed

that the integrations with respect to n are carried out first.

Because the computation marches in the x-direction, the

integrands in the Integration with respect to n are known, except

for the immediate vicinity of the point (x,y) under

consideration. From the values of h at the control points one

can derive an approximation for intermediate points. One r ght

consider an approximation that is piecewise linear in n, but it

is probably preferable to use a higher order interpolation

because of the denominator

[N)- 2 2 (y-0)21I/2 which oecomes zero for (x-ý) = + (n-Y).

One has the choice of using information for h that comes only

from within the region of integration, or one may involve also
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points from outside if one can count on the smoothness of h. The

first possibility may be simpler.

We have seen, that in the vicinity of the point (x,y) the

integral over n does not vanish, although at the point (x,y) the

upper and lower limit of the integral coincide. A limiting value

h - h£ 2 2 " is encountered for n + Y. But at the station (x,y)
nn

and the station upstream of it this limiting value is not

available (unless one admits information from outside the region

of influence). Here the following procedure is suggested. We

assume that in the entire triangle shown in Figure 5, h is given

by one analytical expression.

The starting point is Eq. (31). Developing the integrand

with respect to n one obtains

+1I-

B-1JJi 2 h( 2 2 ) (ý'y)dtdn + 1 h2[ ( 2dn

J j (1- n2)1/2 B Jh2( )(1- /

-1 ( (22)
= l (ir/2) jh (2 ,y)dý

Along the line 2,0,1 one has

h1 ÷h 2 -2h0
An 2fir An2

where An is the interval in n. In the evaluation of the flow

field one obtains in an intermediate step he. Therefore, h• is

available at points 2,0,1 and one has also

hl•, +h 2 ,-2ho 0

An2

For the extrapolation one therefore can use

h 1 +h 2 -2ho h1•+h2ý-2hoE
h= ,E2 + (A-&o)

An An2
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Carrying out the integration from E - Co to & - Es a &o + BAn one

then obtains for the contribution of the triangular region to the

integral

ir/2 [(h 1 +h2 -2h 0 )/An) + (0/2)(h 1 E+h2 E-2hOE)]

where An is the interval in n.

Furthermore

hE1+h 2-ho
h
nný An2

This is used for an extrapolation

Sh 1 +h 2 -2h0 h•1+hý2-2

An An

The interval of integration extends from &0 (at points 0,12) to

BAn at point 5.

The contribution of the entire triangle is therefore given

by

712 • [h1+h 2ho + '- Al(hI +h2 •-2hO,)]
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APPENDIX A

DISCUSSION OF DERIVATIVES OF ,(s) WITH RESPECT TO z WITHIN AREA II

The area II is defined in the main text. It is bounded by

the leading edge, by the straight line ý -- C (where E, is chosen
so that this line intersects the hyperbola (1-E)2-(n-y) - z 2 2 0

twice within the planform) and by two portions of this hyperbola.

One notices that the variable z with respect to which the

differentiations are carried out enters the expression *sII only

in the form of the parameter s = z 2 .

We write

(SII)(I(x,y,z) = (x,y,s)

Then

(dII)( (x,y,z) - 2zos(x,y,s)

(dII) 2
I (x,y,z) = 2¢s(x,y,s) + 4z 2 ss (xy,s)

In the limit z = 0 one obtains

S(dll)(x,y,z) - 0

*0 dII)(x,y,z) = 0s(x,y,s)

provided that *ss exists. Whether *ss exists in the limit z = 0

is not immediately obvious, this is the reason for the

discussions carried out in this Appendix. But after the
existence of ss has been established, it is no longer necessary

to evaluate it in detail, because we are only interested in the
limit z + 0.

The leading edge is given by the equation

9(A.1)
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The inverse of g is denoted by f

N= f() (A.2)

Wn have introduced

n = y + n [(x-) 2-s]/2

-= (n-y)[(x- ) 2-s]
1 /2

In the En-plane the leading edge is then given by

n = g(E,s,x,y) (A.3)

with

g(E,s,x,y) = (g(C)-y)[(x-0)2-s]m 1 / 2  (A.4)

In the present context the arguments x and y are kept

constant. In many cases, they will therefore not be listed as

arguments in the functions in question. The inverse of the

function g at constant s, x, and y is denoted by f(n,s,x,y).

Accordingly, we have as alternative to Eq. (A.3) for the equation

of the leading edge in the &r-system

- f(n,s,x,y) (A.5)

-1

For subsonic leading edges one has [dg/d•[ < a-• For

simplicity, the present discussions will be carried out for

M= 2. Then a = 1. Depending upon the orientation of the

portion of the leading edge under consideration the function g is

either monotonically increasing or decreasing. For g, however,

this is not necessarily correct. In Figure 6, the curve AB is a

leading edge along which n decreases monotonically with E; yet it

is tangent to a straight line through the point (x,y). Such a

straight line is the limit of some curve n - const as z 4 0. The
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variable n therefore first increases then decreases as one

travels from A to B along the leading edge. If this should occur

the area is denoted by IIb; in the C-directive it extends from

to

Let us first consider the problem with subsonic leading

edges. Figure 7 shows such a configuration in the Cn - and in

the &n-planes. At the leading edge the potential and with it h

have a square root singularity. The detailed discussions carried

out here, are made necessary because the leading edge moves in

the Cn system as s varies. We denote by y the local sweep angle

and introduce a local Cartesian coordinate system uv, where the

u-direction is perpendicular to the leading edge. Let I, nl be

the coordinates of the point at the leading edge under

consideration. Then (Fig. 8)

= U cosY + v sinY u = (-1)cosY - (n-nI) sinY

1 F_ 1 1
n-n - -u sinY + v cosY v ( I )sinY + (n-n ) cosY

Because of the square root singularity one has locally

h = const u1/2 const[( -•1)cosY - (n-n 1)sinY]1/2

Therefore for n- = n const

h = const(cosY)I/2(&- 1 ) 1/2

used for = = const

h = const (sinY) 1/2 (1 1/2

The flow field in the vicinity of the intersection of the

two subsonic leading edges is rather complicated. The basic

structure is that of a conical field, but higher order

corr,.ctions occur if the leading edges are not straight or if the
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upwash i.s not constant. This vicinity is best considered in the

original Cn-system. This is the region IIa in Figure 9. In

order to avoid dealing at the same time with two boundaries that

depend upon s, the remainder of the region is subdivided by a

line 0 - 0. One thus obtains the regions IIc and IId. In the

vicinity of the point where a line n = const is tangent to the

leading edge, if such a point should occur, we introduce for this

vicinity a separate region IIb.

In the tip region IIa, the boundaries do not depend upon s.

One has

* h((,y)dzdn€( ,I a)x~~) I [( _•2 (n-y)e2_s]I1/2

(dIa)h(,n)ddn
(d a(x,y,z) =

The denominator is always different from zero. Hence

¢ (d'IIa) (x,y,O) = 0

S(XYO) h(=,n)dd (A.6)(dIa(y,)=I[(X-0 2_ (n-y) 2 ]3/2

To bring the expression into a form which will be encountered in

ctiner regions, we introduce n. Specializing immediately to

s = z 2 = 0 one has n = y + n(x-C).

Then

d (x'yO) = J 2 -2 3/2

Now

d_ (1-n ) = _ 2)3/2
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In the last equation we carry out the integration with respect to

n first, and transform the inner integral by an integration by

parts. At the upper and lower limits (the intersections of a
line E = const with the leading edges) h vanishes and one obtains

(d,IIa) (x i (fh ()(Y+rj(X-n))ndn)d• (A 7)
ýz (XYO) ji- J ýF(1-7f d)A7

(21) 1/2
The function h behaves at the limits as An I the inner

integral converges. The denominator does not vanish since

n < 1. Returning to the original coordinates one obtains an

integrand familiar from Eq. (32)

dIa) (n-y)h (2) (n)(d,02)(x,yO) - JJ o 2_ n - ,ddn (A.8)AIIa (x )2 ( -) ( -Y

One remembers that in this Appendix 0 2 1. In a region IIb
(if it should occur) the integration with respect co n is carried

out first. We write

&2

(S) =

= j F(E,s)dý 
(A.9)

ý2

where

n~g(•,s)

F hh(Ey+-nq(,x,s)) ,F(Cs) = j ~ Tý TJ -i_2) 1/2 T

0 (1I-2 1/2q(E,x,s) = ((x-E)2-S)I/

s = z2

At the upper limit (which is a point of the leading edge) h has a

square root singularity
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h - const (g(E)-n)

This expression is rewritten in terms of n and g, Eqs. (13) and

(17)

h - const [g(E)-y-_.q] 1/2

h ~ const q [g(E)-T) ] 12

The factor q(E,s) has no singularity in the whole of the

region II. The discussions of Appendix E show, that a F /3s2 is

bounded. One therefore finds

E2

(s,IIb) (d,IIb) 2
ýzz = z J2 1 F/3s)idE

E2 s=O

Here

n~g(E,O)

aF/asi -- (2)

s=O (x-E)) n- ) -

Returning to the original coordinates Eq, one obtains the

integrand occurring in Eq. (32)

The regions IIc (or IId) are subdivided into regions IIcl

and IIc2 by the line n=g(E 2 ,s), Figure 11. This boundary moves

as s changes. Consider

1

k(IIcl)(x,Y,Z) = F(is)d-n (A.10)

n=g(E 2 ,s)

where
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F(n,s) - h(ý,(y+nq(ý,x,s))dE (A.11)

As before f(-r,s) denotes the inverse of tile function n-g(E,xy,s)

at constant x,y,s. The lower limit in F lies at a point of the

leading edge. There the function h has a square root

singularity. We write

, - 1/2 12 ,, , +rn4) = [ -fs,)]

(The dependence upon x and y does not appear in the arguments

because they are kept constant.) Here h is free of

singularities. Now the discussions of Appendix E are again

applicable. The first and second derivative of F with respect to

s are bounded, and as the second derivative wit'- respect to z is

needed for z - 0. Only, there is no need to ev.cuate Fss. Fs is

obtained from Eq. (A.11). At the lower limit the function h

vanishes. The discussions of Appendix E show, that (for the

first derivative) the square root singularity encountered at this

point does not matter.

F h -(1/2) n (E'Y+nq (E'xs) )d (A.12)
5 J q

f(n,s)

Then, by differentiating Eq. (A.1O) with respect to s and

substituting Eq. (A.12).
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F(g(ý 2 ,0),O)

s(xsyO) 2

s=O

1 {{ (2) +rl - ) d
- h ( • '• x- • )d& (A.13)

2 j (_n2 77f -

n=g(E 2 ,0)

Going back to the original coordinates ý and n, one obtains again

an expression with the integrand of Eq. (32), except for the

first term on the right, which arises because of the

s-dependence of the lower limit in Eq. (A.1O)

In the region IIc one has

n=g(EmS)
(s I C X' ' ) f F(-n,s)d-n (A.14)@(s llC (x~~z) = (1_-2)1/2

with

F(n,s) [h(r,,(y+nq(E,,x,s))dEj (A.15)

E2

E 1/=~ j 2(C,q,,s)dE;" •

A comparison of Eq. (A.15) and (A.11) shows, that

F(g( e2 ,s),s) = F(g(E 2 ,s),s) (A.16)

The limits in the function F do not depend upor s. A

complication arises, however, because for n=g(E 2 ,s) the integrand
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has a point in common with the leading edge. One will surmise

that this is unessential, but some discussion is desirable. One

obtains from Eq. (A.15)

Fs8(n,s)= (-1/2) [i(2) ( , ns) (E-f( , ns))-1/ •/h (ý,n s)

-1/

+(C-~n's) 12 h() ('n's]d&(A.17)

The first term in the integrand tends to infinity for the lower

limit •'&2 if r-g(ý 2 ,s), that is at the upper limit in Eq. (A.13)

but the integral converges. In addition, one must show, that Fss
is bounded (see Appendix E). One has

F ss(n,s) = j{[-(1/4)(f(a)(n,s))2(C -•(n's))-3/2

&2

-( / ) (2,2) (E_?(, 's) )- 1/21 h(ý, •, s)

_?1 2
/(2(,s) (1-f ) 2,s)s(f 1)/2-( 3 3 (ý,n, s) }d

After the integration has been carried out the term with the

factor (ý-f(•s))-312 gives a result which tends Wo infinity as n

approaches g( 2 1,s). This contribution is

O( ý2-f (n' s))- 1/2

Let n=g(ý 2 ,s)-e (A. 18)

Then f)s) =-Es)

But f is the inverse of g, therefore

f(g-(•2s)'s) = ý2
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and f(g 2 s)-e's) = &2 - 0(c)

The critical term

"(•2-f(n,s)-1/2 is therefore 0(e- 1 /2

If one forms from Eq. (A.13) one obtains in the vicinity

of n1g(&218). r -1/2i2

o(- 1/)de - O(E )

With e defined by Eq. (A.18) the contribution of Fss to 0ss is

therefore bounded. It suffices, therefore, if one evaluates only
,(sIIc)

(sHc) 2 1/2 - ( 2Os =(3ag/s) 1(1-g"E2,0)2- F ,(20),0)

s-0

jg(E2)0)d(2+F(2 (n'O)d•j (A.19)

0 (1_n2)1/2

Because of Eq. (A.16) the first term on the right in this

expression cancels the first term on the right in Eq. (A.13). In
-(2) =the second term in Eq. (A.19), F F is substituted from Eq.

(A.17), furthermore, h (instead of 1I) is reintroduced.
Returning to the coordinates ý and n one arrives again at the

integrand in Eq. (3?).

If the leading edge is partially subsonic and partially

supersonic one can distinguish on the wing surface between the
regions A and B (Fig. 12). They are separated by the Mach wave

emanating from the corner between the subsonic and supersonic
leading portions of the leading edge. The boundary of the region

of integration for a given point (x,y,z) always consists of the
hyperbola and part of the leading edge. If the point (x,y) lies

in the region A, then the part formed by the leading edge is

58



entirely supersonic. At the leading edge the potential and with

it h are zero, as always, and h increases linearly with the

distance from the leading edge. The precautions which we took

because of the square root singularity at a subsonic leading edge

and because of the conical field at a tip formed by two subsonic

leading edges are not needed, and one arrives without the

detailed discussions shown for such cases in this appendix at

Eq. (32). If no points other than those of region A were

considered, it would be preferable to represent the flow field by

a source distribution. The function h is then directly

determined by the given upwash Eq. (23) and the potential is

found by integrations, for instance from Eq. (18). The flow

field ir the region A is not affected by the conical field which

arises at the juncture of the supersonic and subsonic leading

edg~es.

The cases where the point (x,y) lies within the region B

differs from those with two subsonic edges by the treatment of

the vicinity of the juncture of the two edges, Figure 13. We

distinguish between the subregion CDE, lying downstream of the

Mach wave CD (Region Hal), and the subregion CDFG, downstream of

the supersonic part of the leading edge, but upstream of the Mach

wave CD (Region IIa?).

The character of the flow field in the region Hal is

similar to that of the region formerly denoted by IIa. The

contribution of the region Hal to the upwash at the point (x,y)

is again evaluated in the original Enwsystem, and one obtains as

an intermediate result Eq. (A.6). In a further step performed to

bring this result into the form which arises in other regions, we

introduced n instead of n and carried out an integration by parts

Eq. (A.7). Subsequently, we returned to the original in system

Eq. (A.8). This procedure is applied again. But here the lower

limit for n is not a leading edge where h is zero, but the Mach

wave CD, where the potential is different from zero.
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One obtains

Ji 2E 2 2j - En(
r ,o -27Y 1,, 2[(_E _(n. 2] 2

(A20)

The first term on the right is the contribution of the Mach wave

CD. The second term has the form familiar from previous

discussions. In the first term we introduce ii instead of & as

variable of integration

I n - nc - (&-Ec)

One remembers, that for Mach waves dý/dn=+1, because here 0-1.

Then the integral assumes the form

nD

r ( 2 1 / dn (A.21)
(x1 x •) -ny 22_ 2,1/2)

n ( X-0-U Xc -(n- Y ) -

We shall show that this term will be cancelled, provided that one
expresses the solution in the region IIa2 by a doublet

distribution, and evaluates the upwash at the point (x,y)
accordingly. It is true, the determination of the solution in

region A is simpler if one applies a source distribution, the use
of the doublets has the advantage that one obtains in all case

the same expressions in the integral equation.

Because part of the boundary of the region IIa2 is formed by

the hyperbola we introduce again n and perform the integration

with respect to E first. Then
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C(s,IIa2) IC F(n,s) di (A.22)

(1-T1

with

upper(0)

F( ,s) = j h(ý,y+nq)dý

Here, since the discussions are carried out for I-1

q - [(x-V)2_ s] 1/2 s-z2

For n-nC the two limits of the last integral coincide.

Therefore,

F( c,s) = 0

The func'.,on E-=f(n,s) is the equation of the (supersonic) leading

edge in the &n system.

The upper limit upper is partially given by the line DF,

and partially by the line CD.

Differentiating Eq. (A.22) with respect to z, one obtains

A (2)

(dIa2) 2 F (1~2) /2d (A.23)
¢zdIa(=2 (i_ 2)1/2

Now

(2)- (A.24)

ds
L,,upper
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ýupper(n)(2

S(1 /2)(ý,y+nq)dýJ q

f(f,s)

The last term, evaluated for s-O and substituted into Eq. (A.23)

gives a contribution

- nh~m'2 )(,'Y+n(x-)) d-df

I1ID

In terms of the original coordinates &n it assumes the form

familiar from Eq. (32).

In the first term of Eq. (A.24) dtupper/ds=0 along DF.

Since the slope of CD for 8=1 is -1, one has in the tn plane

tupper - •c + r-Tc = 0

or since tc = XcO nc Yc

- (X-pe) + (x-xc) + (n-yc) = 0 (A.25)

upper c c

Here n is expressed by n

n= y + nq

Then Eq. (A.25) for tupper becomes, after substitution of q

-(X) + (x-tc) + (Y-Yc) + n[(X-ý p)2s/20 (A.26)upper c c upper

We note that one obtains for s=O

(X-u )(1-n) + (x-x ) + (y-yc) = 0 (A.27)upper c c

To obtain d upper/ds we differentiate Eq. (A.26) at constant n
with respect to s

62



-+ (X-upper )dupper- (1/2)ds

upper pper

and after rtpecializatlon to s=O

d / upper /dSe _) (A.28)

(Xýupper)(-1

This is now sub3tituted into the first term of Eq. (A.24) and

subsequently into Eq. (A.23).

Then one obtains

rCh(&upper (n),y+ nq))ndn

(x-upper (-n))(i -in)
nD

To compare this expression it with Eq. (A.21), one must replace

the variable n1 by ri. One has from Eq. (A.14.3)

dEupper(1-7) + (X-Eupper)dn=O

Along CD, dEupper - -dn. Therefore

dii (1-n)
dn X-Eupper

Thus the above expression assumes the form

nC
TicT

J (x_ý) 2[ (x_•) 2_ (n_y)2]1 /2 I
n D ý=ýcý(n- c)

Because the limits of integration are interchanged, this is,

indeed, the negative of the expression (A.21). In the combined
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contributions of the regions Hal and I1a2, the integrals along

the line CD cancel.
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APPENDIX B

EVALUATION OF CERTAIN INTEGRALS

The integral Irm(p) is introduced in Eq. (68)

(1+l l)- m+2^I (p) d&(B.1)

SJ(1_ )2[(1_ 2_ p 2 ]1/2

0

The radicand is rewritten

2 _22 2 1- (_p22 2 p2

We introduce

A 2
&(I-p )-1 = -q (B.2)

Then

1-p

2

1-pA -dq

1-p 2

The lower limit of I r(p) transforms into q=1, the upper limit

into q - tpIP Then one obtains

1

Ira(p) = ( 1 -p2)-m-(1/2 (1-q)m+ 2dq
J 'q-p2)2 [q2_p 211/2
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One has

m+2 . [(i_p2) 2 m+2(1-q)m E1p (q-p )]

=(1-p2)m+2 m (m 1)(1-p 2) m+1(q-p 2 + (m22)( 1 p2)m-2 (q-p2)2

In particular for m-2

(l-q) 2 (1-p 2 )2 -2(1-p 2) +1

o 22 2
(q-p (q-p21 (q-p2)

for m=1

(1-q) 3  1-)

(1-q) - 3(1-p 3 + (6-8p2+3P4 + (-4+2p2)q + q

(q-p 2 ) 2  (p2)27 ( T2

expression for greater values of m are easily derived when

needed. We introduce the following integrals

1
"• I dq

S( 2)2 2_p2)1/2

2 -2 2 2 61 3 +(1+p)(q-p) (qpI )q (qp)

Ipl (q-p 2) (q 2_p2)1/2

dq

12 2 o 2)I? /2

(pI (q2-p
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1~ f q ndq

Then

IO (1-p 2 )3/2 1 -2 - 2(1-p )2 I-1 + (1-p2 )-1/21o (B.3)

1 (p) - (1-p 2 ) 3 / 2 1-2 - 30-p2)1/2 1-1 + (1-p 2 )-3/2(3-2p2)1

- (1-p 2 )-3/2i 1

I 2(p) _ (i-p 2 ) 3 / 2 I_ 2 a 4(1-p 2 ) 1 / 2 I-1 + (1-p 2 )- 5 1 2 (6-8p 2 +3p 4 )I

+ (1-p 2 ) 5 /2 (,-4+2p 2 )11 + (1-p 2 )-5/2

The integrals In (in their indefinite form) are connected by the

recurrence relation

In - (1/n)[q n-1(q 2-p2)1/2 + (n-1)p 2In-2] n > 2

This is shown as follows

f 'd q n-1 dqndqd
n J(q2p2)1/ J(2 q2p21/2

= q n1(qe2_p21_ -(n-1) q n-2 (q _2)12

qn-1 (q2_p2 )1/2  ( qndq +(n-1)p2j qn-2dq.,
j -ý 77-72 --2_2 1/2

q ( p2 (q -p2)

The two integrals on the right are respectively In and In-2'

This leads to the above recurrence relation. One verifies by
differentiation
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1 11o 0 i(q--2-_p =•i-/ log [q + (q _p2)/] log 11.-pl/

•1 fqd9 = (q2_ p2)1/2 (lp2)1/2
= 1 iq2_p2)1 2  P = (1 -

Ipli

Then, according to the above recurrence relation

I2 = (1/2) (C-p2)I/2 + (p2 /2)10

The integrals I_2 and I-1 can be found in tables. The author has

used Ref. 1, Formula 234.3a for 12 and, with some modification,

formula 234.3b for I 1, One has

r dq - (a2 2)-1/2 a2-aq

J(q-a)(q2-a2)1/2a a(q-a)

r dq 2 _ - 1[(q2_a 2 ) 1_/2J q•2(q2_a21/2 a2-2 I - r 21/

(q-a) q-a a+ J(q-d)(q 2-a )/2
2 2 2( _2

At present a=p, a=p 2, then a 2-a = p (1-p )

Therefore

1

I-1=1p11 (1-p)1/ arc cos ROc~ + IpI- 1(1-p2) 1~ 2~

q-p q=IpI

-2 2 -1 22(q2_2)1/2 2

1-2 p (1-p q-p 2 + p I-1 (B.4)

q=IpI

"- 1
I-2 pR(1_p2)3/2 [I+IPIr/2]

Substituting these expressions into Eq. (B.3), one obtains
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10 1 ) - 1 i -1/2 [lg l(lp )1/2 - gl l
p P 7+(-

1 ( = -- 1 + (1-p2 /2 (32 2 [ g l+ - 2 )1/2 )-o i l- lp2 )-1

p

2 ~ ~ p 2p-1 1 3 (i-p2)-2(-(7/2) +2p2 +
P2 PI+(- 52 (-(5/2)p2 +3P4 )[o~+p2 )1/2 -gpl
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APPENDIX C

TREATMENT OF A CERTAIN INTEGRAL

The integral

S(I/p)[(9--p)(r2+p )]- /2fmn(p ) dp

a 2

has a singular integrand at p-O. In the main text it is stated
that one should form the Cauchy principal value. Here we shall
justify this procedure. The term arises in the evaluatt.on of
Q2n , Eq. (67); specifically it is due to the function Ira(p),
defined in Eqs. (68) (70) and (71). The above expression arises
from the first term on the right in Eq. (70).

According to the observations made in conjunction with
Eq. (32), the occurrence of such a singularity must be expected.
One deals with the evaluation of a certain double integral, and
such a singularity will arise, unless one carries out the
integrations in a certain sequence. In the present approach a

different sequence has been applied. To give meaning to the
double integral in such a case, one first excludes the point
(x,y), by a line ý=x (1-E) or &=I-e>O. In the present context

Yo=O.

The factor 1/p in the integrand arises from 1_ 2 , Eq. (B4).

Before the limits of integration are substituted the term which
causes this factor reads

p-2(1_p2)- (q2_p2)1/2

q-p

The variable of integration q is expressed by • in Eq. (B2). The
lower limit in E in Eq. (BI), transforms into q=1. This appears

here as the upper limit. The upper limit is q = IPI for values
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A

of p, for which that the integration over & ends at one of the
straight lines AB or CB in Figure 14. Along the straight line
BC, the upper limit is given by by ý=1-e. Then one obtains

q =1-(1-e)-(1-p2)

2 2

q = + p -pi

By the transition ftom E to q the upper and lower limits are

interchanged.

E is assumed to be small, and obviously p=O(e) along
BC. The last term on the right can, therefore, be neglected.
The values of p for which this limit must :e applied are found
from the requirement, that at the transition value the limits
from the adjacent regions are the same

For e small p 2 «<<.

The transition points, therefore, lie at

IpI =
Substituting these limits into the expression (Cl) one obtains

P-2 (1-p2-3/2 for p > e

Sp2 -p 2_ p2/2 for p<and p I- ) (I_p2)i/2 Cp 2 ] fo p<

In the bracket we have used the fact that p and E are small.
Notice, however, that p/c is not necessarily small. One has
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1 (c 2 -p 2) 1/2 1__ 1 2 _(C2-p 2 )1 / 2[ •P - _2 ] 1- 2 1/2 ( 2 p2) 2] [

1[C2ý 2c 2+222 2
c-,p ~( p -)_£lc [ ,-2+(-2--21p -?-] p20(€2

The critical integral then appears in the forms

[a1-P)(a2f n(p)dp + pO( 1)dp

-a2  -C

a 1

+ , -_ [(al-p)(a 2 +p) ]/ 2 fm'n(p)dp

The first and third term combined are the integral

interpreted as its Cauchy principal value. The integrand of the

second term can be split into its symmetric and antisymmetric

parts. The lowest order term of the symmetric part is

+ 
2

constJ P--p = 0(c)
CE-c

This establishes the (expected) result.

72



APPENDIX D

EVALUATION OF AN INTEGRAL

The expression to be evaluated is

a1

I - P j [(al-p)(a 2 +P)]-I 2p-dp a 1e>O, a 2 >O

-a 2

where P expresses that the Cauchy principal value is to be taken.

By setting

a-a 2  a +a21 = - 2-- + p --1 2--
p+ p

al+a 2 2)-
one obtains I 2(2)

where

+1 ~
- (dp

1 1/2
a1 -a2-a

and a - 2
a 1 +a 2

Because a 1 >O, a 2 >O one has

lal < 1.

- 2
Setting p =2u2+1

"- l4ududp = 2--

(u 2+1)
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(1-p
2 ) 4 2

One obtains

Co 0 + C

2du = 2du 1 Ir du (D1)S.! (1-a)-(l+a) 1- u u2_b2 J u u2_b2
0 0 -

where b I+a O, since lal0.

I is rewritten

I 1 1Tf-l----i-)du
I TTf J-a -b u-b u+b

-Co

Eq. (DI) shows that the path of integration can be closed at

infinity, in the upper half of the complex u-plane Figure 15.
The singular points u = + b are excluded by small circles. The

integral over this closed path gives zero. The residue at the

two singular points are +1. The contributions of the small

circles must be subtracted, if one forms the principal value of

the integral. The sum of these contributions is zero, because
the residues have opposite sign. Therefore

a1

P j [(al-p)(a 2 +P)]- /2p ldp - 0.

-a 2
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APPENDIX E

LEIBNITZ' RULE FOR CERTAIN INTEGRALS WITH SINGULARITIES IN
THE INTEGRAND

Consider an integral

x2 (z)

I(z) - j f(x,z)dx

x 1 (z)

where the function f(x,z) and the limits x 1 (z) and x 2 (z) are

differentiable with respect to z. Then one obtains according to

Leibnitz' rule

dI/dz - f(x 2 (z),z)(dx2 /dz) - f(xi(z),z)(dxl/dz)

x 2 (z)

+ (Of(x,z)/3z)dx (El)

x 1 (z)

To derive this equation one introduces

x - g'u,z)

where the function g(u,z) is chosen in such a manner that for the

values of z under consideration

x 1 (z) - g(u 1 ,z)

x 2 (z) - g(u 2 ,z)

where u1 and u 2 are independent of z.

We denote by f (1) and f (2) or g(1) and g (2) the derivative

of f and g with respect to either the first, or second argument.

For higher derivatives a correspondig notation is used, for
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instance f (1,1) for the second derivative of f with respect to
the first argument.

Then

U2

I(Z) f(g(uz)g1)(uz)du

U1

and

U2

utf (g(uz),z)g (2) (I)(u,z)+f 2(g(u,z),z)g (1)(uz)
uI

f(g(u,z)g (,2)(u,z)Idu

One obtains the result Eq. (El) by observing that in a more

conventional rotation

f(l) g(1)
f(1g 1 = (3f/Dx)(3g/au)-(df/du)I

z - const

Carrying out an integration by parts in the first term of the
integrand one obtains

u2 u2
U2  2

dI/dz - f(g(u,z),z) g(2)Cu,z)l + j1 f(g(u(z),z)g(1,2)(u,z)
uI UI (12

+f(2) Cg(u,z),z)g (1)(uz) + f(g(u,z)g (1,2) (u,z)}du

The first and the third term of the integrand cancel.

We return to the original variable x
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f(g(u,z),z)- f(x 1,z)
u-u1
U U1

g (2)(u'z) I - dxl/dz

and analogously for u 2 . One then obtains Eq. (El).

This approach is useful, if the function f has a singularity

at one of the limits, and if one has to form higher derivatives.

Consider a simple example:

z

I(z) - J (z-x) 1 /2dx (E2)

0

The result is obvious

Z

l(z) = -(2/3)(z-x)3/ 2  1= (2/3)z 31 2  (E3)

X-O
d._I 112 2 (E4 ,(E5)
dz . z d2 I/dz2 = (1/2)z (E4),(E5)

Let us forego the direct integration, and carry out the

differentiation in Eq. (E2) with respect to z according to

Leibnitz' rule. The integrand in Eq. (E2) vanishes at the upper

limit z.

Accordingly,

z z
dL _ (1/2) r(z-x) 1/2dx -1/2 1/2

0 0

Althoug1, the integrand in Eq. (E2) has a square root singularity

at the upper limit, one obtains the correct result, Eq. (E4).

The procedure fails for the second derivative
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dRI (1/2) (z-x)- 1/2 , -(1/4) -3/2
dz2 1

At the upper limit the first term becomes infinite. It is true

the integral becomes infinite, too, and the two "infinities" will

cancel, but this observation still does not give a result.

Proceeding in the manner shown above we introduce

(x-z) - u

Then

z

I(z) ul/2du

0

Because the integrand has no singularity at the upper limit,

Leibnitz' rule can be applied

z

dI/dz u 1/2 j = z1/2

0

The second derivative is then trivial.

In the context of this report, the problem appears in a more

complicated form.

b

I(z 2 (x-a(z 2 ))1/2f(xz 2)dx

a (z")

where the derivatives of f and a with respect to the two

variables exist. We set

2
S = Z
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Then

b
I(s) - r (x-a(s)) /2f(xs)dx

a(s)

The integrand vanishes at the lower limit. Application of

Leibnitz' rule gives the correct result.

b
dI/ds - J [-(1/2)(x-a(s))- 1 /2a'(s)f(xs)+(x-(a(s)) 1 / 2 f(2)(x,s)]dx

a(s)
(E5)

The procedure fails for the second derivative. Therefore, one

sets

x - a(s) - u

Then

u-b-a(s)
I(s) u /2 2f(a(s)+u,s)du

u=0

The integrand is regular at the upper (s-dependent) limit.

Therefore Leibnitz' rule can be applied

(dI/ds) = -u 1/ 2 f(a(s)+u,s)a'(s)I (E6)
w=b-a(s)

b-a(s)
+ /2 f(1)(a(s)+u,s)a'(s) + f( 2 ) (a(s)+u,s]du

u=0

To obtain Eq. (E5) an integration by parts must be carried out.

Notice that

i f(1)(a(s)+u,s)du = f(a(s)+u,s)
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An integration by parts of the first term in the integrand gives
outside of the integral a term which cancels the first term on

the right in Eq. (E6). Therefore

b-a(s)
dI r [(1/2)u- 1 / 2 f(a(s)+u,s)a,(s) + ul/2f(2)(a(s)+a,s)]du

U -0

Eq. (ES) is obtained after one reintroduces x. The second

derivative (d 2I/ds 2) from Eq. (E6) can be found without

encountering an infinity.

In this report, one needs derivatives with respect to z but

only for z-O. One has

(dI/dz) - 2z(dI/du)

(d 2I/dz 2) - 2(dI/du) + 4z 2(d 2I/du )

Hence

dI/dzl = 0 (E7)

z=O

d 2 I/dz 2  = 2(dI/du)

z=O

b
j -(x-a(z 2) /2(da/dz )f(x,(z) 2)+2(x-a(t) 1/ 2 f(2)(x,z 2)dx
12 

z 0a(z2)

b

2 d [(x2(a(z2) 1/2 (x,z2)]dxI (8)2j d(z 2 ) [I) x
a(z 2) Z=O

The results Eqs. (E?) and (E8) could have been anticipated

on intuitive grounds.
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S~Mach Wave

Subsonic Hyperbola

Leading Edge

Supersonic (xy)

Leading Edge

&,x

Figure 1. Region of Integration with Subsonic and Supersonic
Leading Edges.
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Figure 2. Region of Integration with Subsonic Leading Edges.
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Figure 3. Subdivision of the Region of Integration.
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Figure 4. Region of Integration I for z0O and z#O.
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1 Mach Wave
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0 1ý xly

3

2 Mach Wave

Figure 5. Evaluation of the Double Integral in Eq. (32) in the
Vicinity of a Control Point.
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Figure 6. Region of Integration for z=O with Line • = const
Tangent to one of the Leading Edges.
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Figure 8. Local Coordinates at a Point of the Ieading Edge.

89



Mach Wave

Leading ,

Edge •
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Figure 9. Subdivision of the Region of Integration Il.
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i ~IIC E

lid

Image of the
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Figure 10. Subdivision of the Region II if the Image of the
Leading Edge has a Point where it is Tangent to a
Line • = const.
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Figure 11. Subdivision of Region II in the En Plane with Further

Subdivisions in the E Plane.
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Figure 12. Regions A and B in a Problem with a Subsonic and a
Supersonic Leading Edge.
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Figure 13. Problem with a Subsonic and a Supersonic Leading
Edge, Region IIa and its Subregions IIa. and 1Ia2.
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Figure 14. Truncation of the Area of Integration by the Straight

Line BC (R = x - c)
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-b Path of Ureal

Integration

Figure 15. Evaluation of a Certain Integral in the Complex
u-Plane.
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